Daniel Chateigner

Professeur des Universités

Université de Caen – Normandie Université

Coordonnateur du CSNM

Collectif Scientifique Méthanisation raisonnée

Pierre Aurousseau

Professeur Honoraire des Universités

INRA – Agrocampus Rennes

Directeur du CSEB

Collectif Scientifique Méthanisation raisonnée

CSNM

21 membres

15 disciplines

Almagro Sébastien	Maître de Conférences	Université de Reims	Biochimie, Biologie cellulaire
Astruc Jean-Guy	Docteur-Ingénieur	BRGM, retraité	Géologie, Hydrogéologie
Aurousseau Pierre	Professeur des Universités	INRA Rennes, Agrocampus Ouest	Agronomie, Environnement
Bakalowicz Michel	Directeur de Recherches	CNRS, retraité	Hydrogéologie, spécialiste des sols karstiques
Bourguignon Claude	Ingénieur Agronome	LAMS	Microbiologie
Bourguignon Emmanuel	Ingénieur Agronome	LAMS	Microbiologie
Bourguignon Lydia	Ingénieure Agronome	LAMS	Microbiologie
Chateigner Daniel	Professeur des Universités	Université de Caen Normandie	Physique
Demars Pierre-Yves	Chargé de Recherches	CNRS, retraité	Préhistoire
Fruchart Daniel	Directeur de Recherches Emérite	CNRS	Physique-Chimie
Hamet Jean-François	Professeur des Universités	Ecole Nationale Supérieure d'Ingénieurs de Caen	Chimie
Langlet Mathieu	Chargé de Recherches	CNRS, Laboratoire PACEA, Université de Bordeaux	Préhistoire
Lasserre Jean-Louis	Ingénieur Chercheur	CEA, retraité	Electronique et Systèmes Rayonnants
Lorblanchet Michel	Directeur de Recherches	CNRS, retraité	Préhistoire, spécialiste des grottes ornées
Morales Magali	Maître de Conférences	Université de Caen Normandie	Physique
Murray Hugues	Professeur émérite des Universités	Ecole Nationale Supérieure d'Ingénieurs de Caen	Physique
Raveau Bernard	Académicien des Sciences, Professeur des Universités	Université de Caen Normandie	Chimie
Réveillac Liliane	Médecin Hospitalier	Hôpital de Cahors	Radiologie
Salomon Jean-Noël	Professeur des Université	Université de Bordeaux, retraité	Géographie Physique
Tarrisse André	Docteur Ingénieur	DDAF du Lot, retraité	Hydrogéologie
Viers Jérôme	Professeur des Universités	Observatoire Midi-Pyrénées	Géochimie des Eaux et des Sols

Pourquoi le CSNM ? genèse

Consommation effrénée (ressources fossiles) → Changement climatique → GES

→ Politique de protection environnement et biodiversité → EnR (Eolien, solaire PV, méthanisation)

Méthanisation: Microméthanisation, à la ferme, agricole collective, industrielle, STEP ... et mix

Présentée comme « Vertueuse »: - valorisation de déchets → méthane CH₄

- augmenter le revenu des agriculteurs

- économie d'engrais

Pour ces raisons: ce gaz est appelé biogaz, ou biométhane s'il est épuré, voire gaz « vert », pourtant rien n'est Biologique ni dans le processus ni dans les produits au sens « Agriculture Biologique »

Pourquoi le CSNM ? Des conséquences occultées

Conséquences variées et négatives

- nuisances (odeurs, sanitaires, transports)
- impacts sur et hors- sols et la biodiversité,
- impacts sur les nappes et les airs
- immobilier

Riverains alertés \rightarrow CNVM, 68 associations et collectifs au 28/11/2019

→ Fiches pédagogiques du CSNM pour saisir les conséquences des feuilles de route ADEME et autres annonces

Matière Organique

CHONSP: Carbone Hydrogène Oxygène Azote Soufre Phosphore

Qui forment des « chaînes courtes » et des « chaînes longues »

Glucose

OH

OH

OH

OH

OH

OH

OH

COH

H

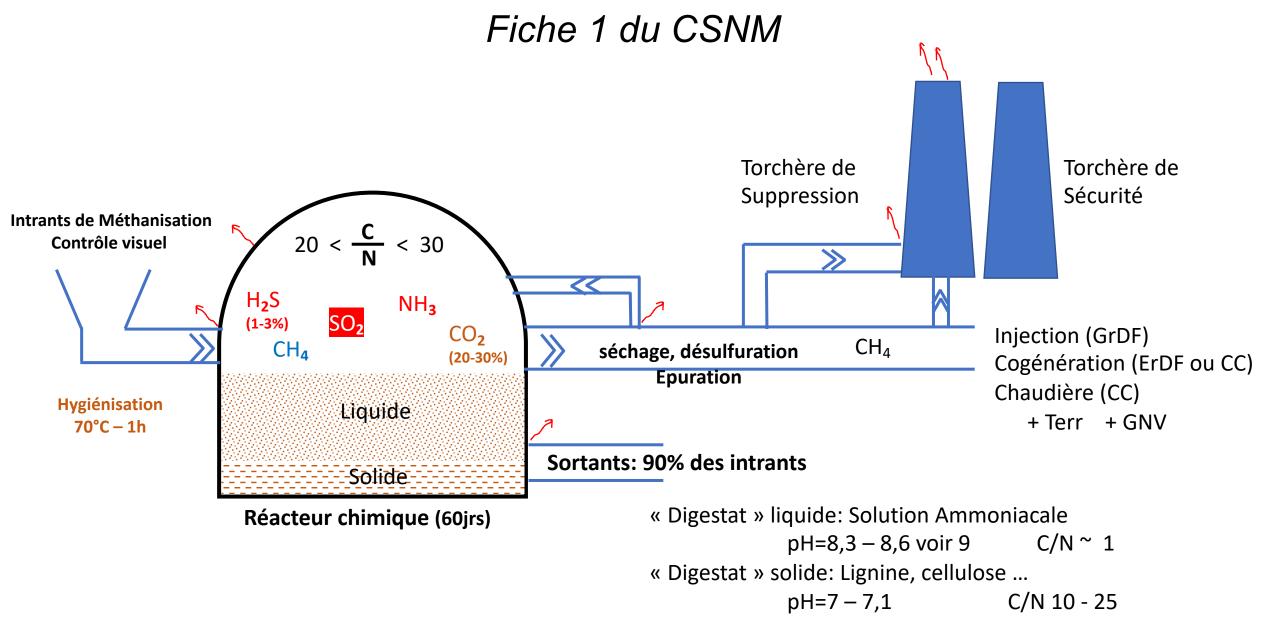
COH

H

COH

CoH

$$C_6H_{12}O_6$$


Que décomposent:

Bactéries

et

Champignons

Méthanisation en ultra bref!

Quelques Grandeurs

Quelles quantités de produits pour 10 tonnes d'intrants de méthanisation :

Gaz (1,7)	Digestat (8,3)	
	Liquide (7,8)	Solide (0,5)
CH ₄ (1) CO ₂ (0,42) H ₂ S, NH ₃ , (0,28)	NH ₄ (0,03) Ntotal (0,04) K ₂ O (0,02)	MO résiduelle : (0,1) P ₂ O ₅ (0,005) NH ₄ (0,001) Ntotal (0,004)

Donc en gros pour 10 000 t d'intrants :

1 000 t de CH₄ 8 000 t de Dig. Liq. 700 t de CO₂ 1 000 t de Dig. Sol.

Cultures:

- Résidus: Pailles, Betteraves, coupe, ...
- Culture Intermédaire à Vocation Energétique (Ciboule, Tréfles, ... Maïs!)
- Dédiées (Maïs, Colza, ...) 15% max en France
- => Si compostage naturel (Ph Neutre, Carbone, μ-organismes, macro-organismes (vers, arthropodes, collemboles, insectes ...)

Déchets Organiques:

- Effluents d'élevages: Lisier, Fumier ...
- Biodéchets (résidus ménagers, Restauration, IAA, ...)
- Sous produits animaux (Déchets d'abattoirs, graisses, sang, ...)
- Boues de STEP

Epandage de digestats:

- Digestat brut
- Séparation de phase: Digestats liquide et solides
- Traitement par stripping

Gaz:

N₂O: Protoxyde d'azote (298 GES)

SO₂: Dioxyde de soufre

CO₂: Dioxyde de carbone

CH₄: Méthane résiduel (25 GES)

NO_x: Oxydes d'azote

H₂S: Sulfure d'hydrogène

Pouvoir Méthanogène

Fiche 2 du CSNM

- Le pouvoir méthanogène est très variable d'un intrant de méthanisation à un autre. Il varie de quelques m³/t pour les intrants les moins méthanogènes (lisiers par exemple), à quelques centaines de m³/t (huiles, graisses) pour les plus méthanogènes.
- Pourquoi ces différences ?

Pour produire le méthane (CH₄), les intrants les plus méthanogènes doivent contenir beaucoup de carbone (C) et d'hydrogène (H), comme les huiles ou les graisses. Le lisier en contient très peu.

Pouvoirs méthanogènes

Lisier de porc 10 m³/t Maïs 90 (pâteux) – 330 (paille)

Huile alimentaire 784 m³/t

Pourquoi certains intrants diminuent la méthanisation ?

Certains intrants contiennent beaucoup d'eau (H₂O) et donc peu de carbone en proportion. Ils peuvent aussi être riches en azote (N) et soufre (S). C'est le cas des lisiers.

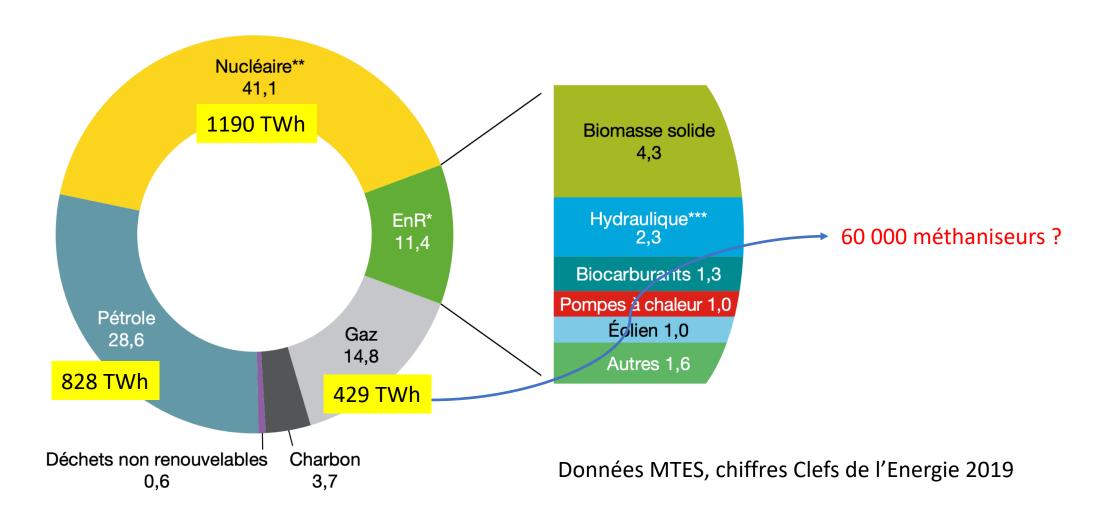
Avec N, S et H, et en absence d'oxygène (anaérobie), les gaz NH₃ (ammoniac) et H₂S (sulfure d'hydrogène) sont produits. Ces gaz dangereux, ont un effet dépressif sur les bactéries méthanisantes, c'est à dire qu'ils les empêchent de produire du méthane.

Quelques Grandeurs énergétiques

1 TWh = 1 000 GWh = 1 000 000 MWh = 1 000 000 000 kWh

PPE: 10% du Gaz Naturel sous forme de Biogaz en 2028 – 2030: 50 TWh/an

Méthaniseur moyen: 7,17 GWh/an


Nombre de méthaniseurs: 50 000 GWh / 7,17 GWh = 7 000 méthaniseurs!

Pour: 30680 t x 7000 = 214 Millions de tonnes d'intrants

RÉPARTITION DE LA CONSOMMATION D'ÉNERGIE PRIMAIRE EN FRANCE

TOTAL: 249 Mtep en 2018

En % (données non corrigées des variations climatiques)

Quelle surface nécessaire ? *Fiche 5 du CSNM*

1 département métropolitain moyen français: 6400 km²

Sur la base ADEME 2013:

50 TWh/an (10% du Gaz Naturel fossile)

3 à 6 départements Français!

Combien pour produire 100 % du Gaz Naturel fossile ?

C'est pas nouveau! Les biocarburants c'était pareil!

Quelles Conséquences Sociétales ?

Comment peut-on accepter que nos agriculteurs soient mieux rémunérés en produisant du gaz qu'en donnant à manger à la population ? C'est immoral!

Allemagne: augmentation du prix des terres

augmentation du prix des fourrages

Donc mise en compétition des agriculteurs entres eux à brève échéance

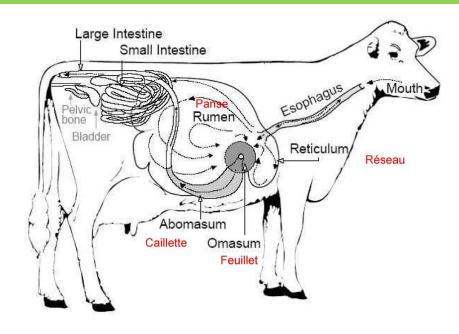
Mise en compétition avec les grosses multinationales du gaz ...

Sortie des digestats du cadre de déchets: décrets DigAgri2 et 3

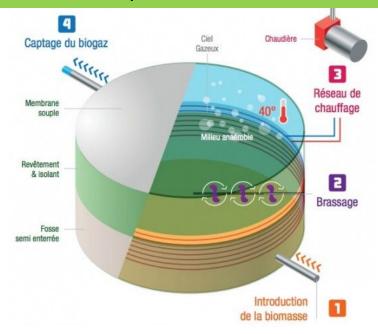
Méthanisation = procédé chimique, pas « Bio » ni « vert » ! Fiche 4 du CSNM

Génie des Procédés Chimiques

Hydrolyse enzymatique et acidogénèse: les chaînes organiques complexes (polymères: protéines, lipides, polysaccharides) sont transformées en composés plus simples (monomères: acides gras, peptides, acides aminés, alcools, sucres)


acétogénèse : les monomères sont convertis en acétates, acides organiques, alcools et (H₂+CO₂) par les bactéries fermentaires et acétogènes

méthanogénèse : les acétates et (H₂+CO₂) sont transformés en méthane et en gaz carbonique par les archées méthanogènes


$$H_2 + CO_2 \rightarrow CH_4 + CO_2$$

 $CH_3COOH \rightarrow CH_4 + CO_2$

« comme la panse d'une vache »?

Tube digestif du ruminant aérobie-anaérobie

Réacteur chimique à fermentation anaérobie

Intrants Végétaux uniquement

Air (O_2, N_2)

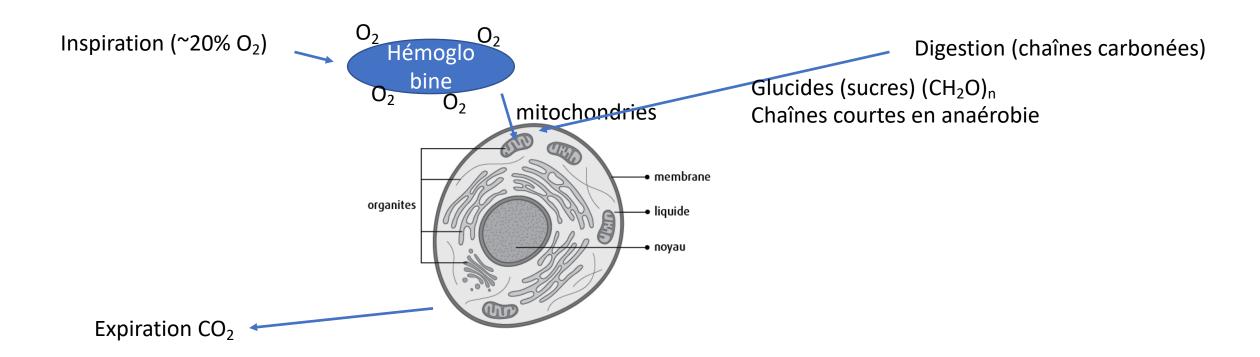
Sortants Effluents liquides -lisier, $(NH_2)_2$ CO

Effluents solides –fumier (Cellulose, hemiC)

Lait (gluCose-galaCtose, CO₂, N₂, O₂ dissouts)

Gaz (CH_4 , CO_2)

Végétaux, effluents, boues STEP, abattoirs, cantines, huiles usées, IAA, pharmaceutiques ...


Digestat liquide (NH4-OH): 80%

Digestat solide (C, P, K, N): 10%

Gaz (CH_4 , CO_2 , NH_3 , H_2S): 10%

Ce n'est pas « comme la panse d'une vache »!

Car la circulation sanguine opère

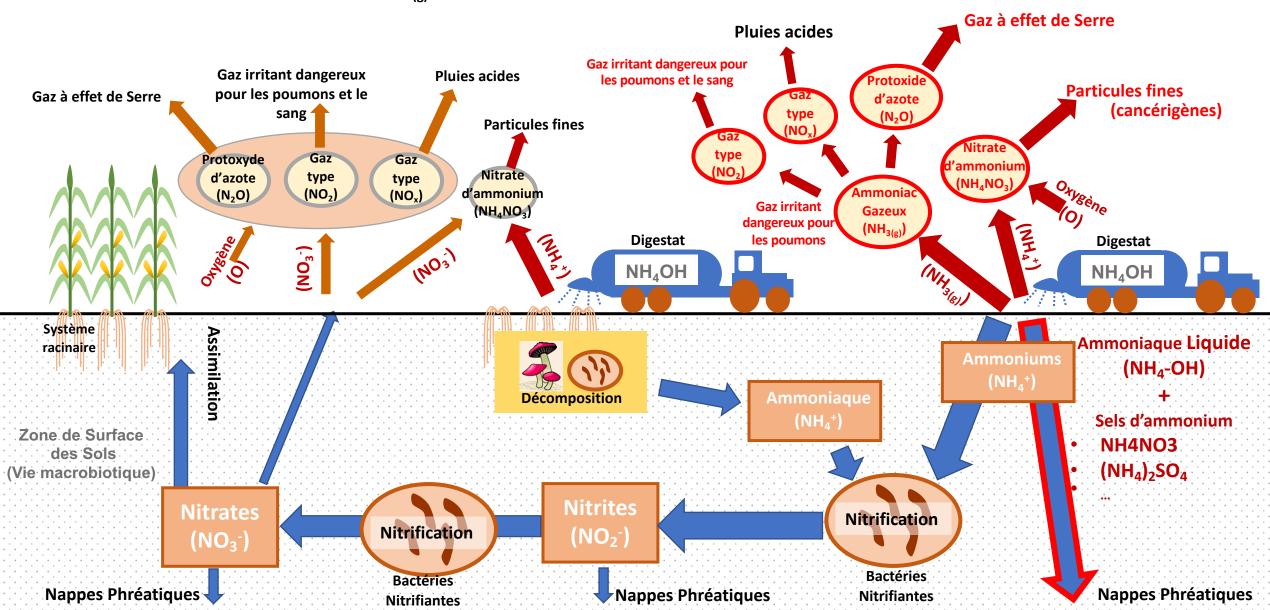
L'Hb transporte O₂ qui transforme les nutriments issus de la digestion en énergie directement utilisable par les cellules

Bilan aérobie

$$(CH_2O)_n + nO_2 \rightarrow n(CO_2 + H_2O)$$

L'énergie libérée profite à l'organisme (aux cellules)

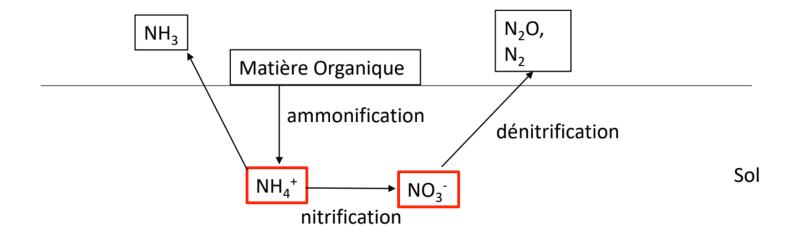
Bilan anaérobie


$$(CH_2O)_n \rightarrow n(CH_4 + CO_2)$$

L'énergie libérée sert à créer du gaz

Ce n'est pas « comme la panse d'une vache »!

Digestat à l'épandage


- Rappel: l'ammoniac dissout dans l'eau forme de l'ammoniaque: $NH_3 + H_2O \rightarrow NH_4$ -OH en équilibre soit aussi (NH4+)(OH-)
- Ammoniac: NH_3 ; Ammoniac Gazeux: $NH_{3(g)}$; Ions hydroxyles: (OH^-) ; Ions ammonium (NH_4^+) ; Ions nitrates (NO_3^-)

Assimilation de l'azote: nitrates ou ammonium ?

Azote disponible pour les plantes

(hors fixation symbiotique de N₂)

- Dans les sols tempérés plus de NO₃ que de NH₄
- Accumulation d'ammonium dans les sols où la nitrification est inhibée (sols acides, hypoxiques) ou par excès d'engrais
- Plantes cultivées tolèrent généralement moins bien l'ammonium que les plantes sauvages

Juliette Leymarie; IEES Paris

Absorption de l'ammonium

Ammonium source d'azote mais toxique à de fortes concentrations : Syndrome ammoniacal


Croissance et rendements diminués, perturbations ioniques et du gradient de

pH, chloroses, stress oxydatif

Augmente la photorespiration et la respiration Perturbations hormonales, modifications de l'architecture racinaire

Toxicité de l'ammonium

Suppression du gradient de pH

6.0

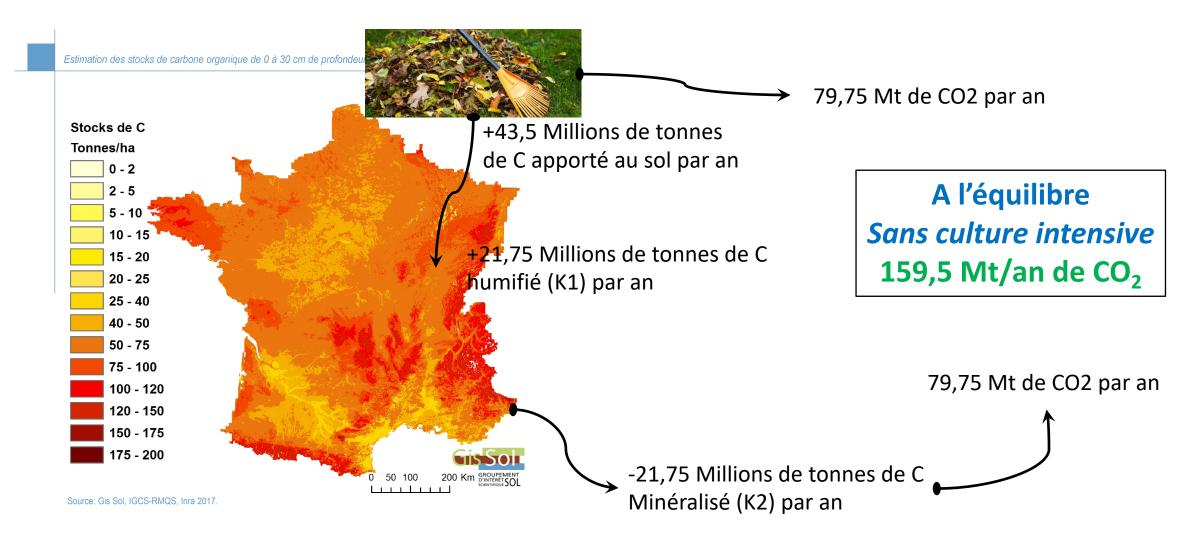
 $N = NH_A^+$

 $N = NO^3$

Hessini et al. (2019), Plant physiol. Biochem.; Krapp (2015) Curr. Opin. Plant Biol.; Li et al. (2017) J. Exp Bot Liu & von Wiren (2017) J. Exp Bot; Noguero & Lacombe (2016) Frontiers Plant Sci.; Sarasketa et al. (2014) J. Exp Bot; Xuan et al. (2017) Curr. Opin. Plant Biol.; Zhang et al. (2018) Eur. J. soil. Science; Zhao & Shen (2018) Frontiers Plant Sci.; Esteban et al (2016) Plant Science

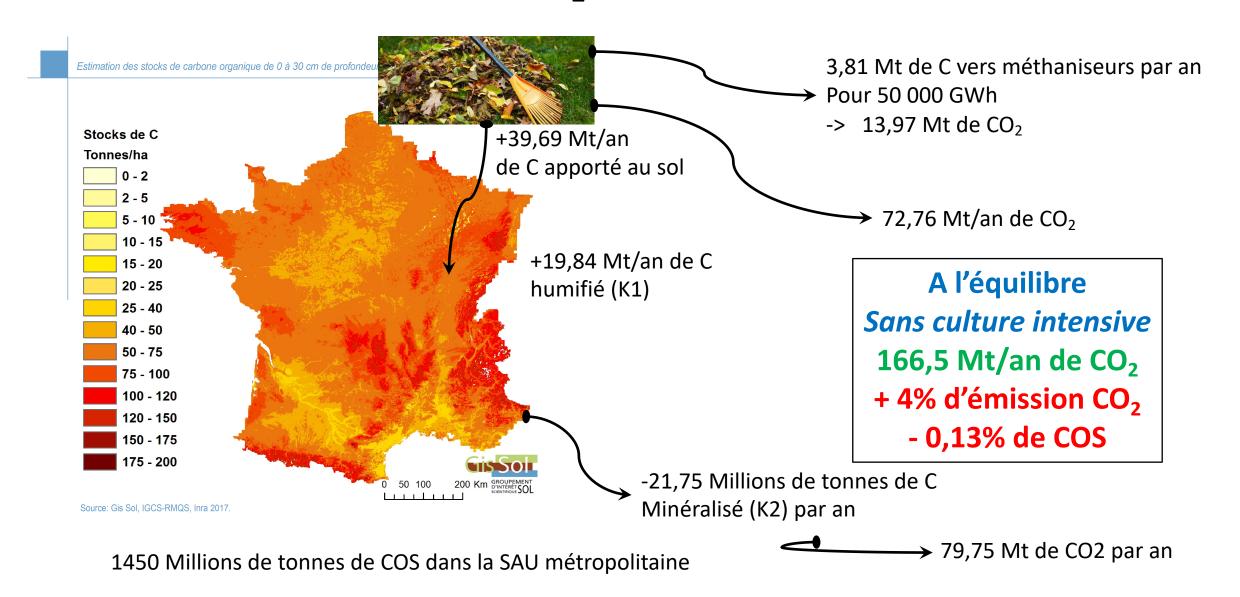
Taux de Matière Organique (et de COS) des Sols

- Quels sont les moyens pour apporter de la Matière Organique dans les Sols
 - Broyer et laisser les déchets de cultures sur le sol :
 - CIPAN (Pièges à Nitrate tels que Ciboule, Tréfles, ...) / engrais verts => Humus, matière organique pour le sol
 - CIVE (Cultures intermédiaire à valeur Energétique
 - Pailles, menues pailles, ...
 - Pulpes de Betteraves
 - Epandage de fumiers
 - Epandage de compost
 - Epandage de Lisiers


- => Humus, matière organique pour le sol
- => Humus, matière organique pour le sol
- => Alimentations animales => Fumiers

La SAU Française sans méthanisation

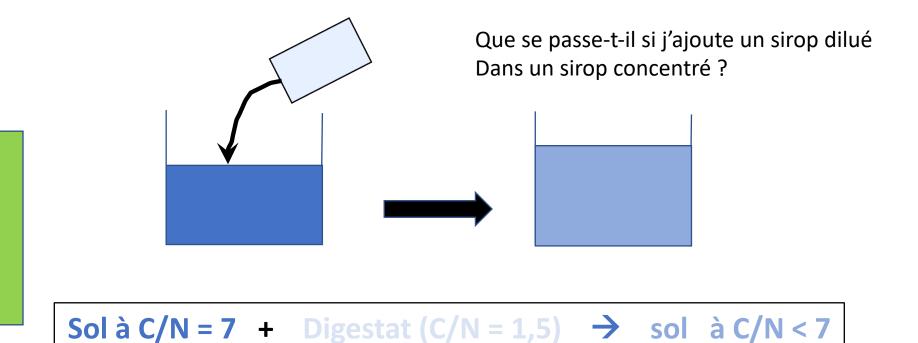
Le modèle Hénin-Dupuis MO: résidus organiques amendements organiques 1-K1: coefficient de Rejet de CO₂ minéralisation primaire K1: coefficient Gain en COS d'humification CO₂ Perte de COS K2: coefficient de minéralisation MO stable: humus Rejet de CO₂ secondaire, Processus lent


Un sol naturel gagne en humus: il séquestre CO₂

Bilan COS-CO₂ sans méthanisation

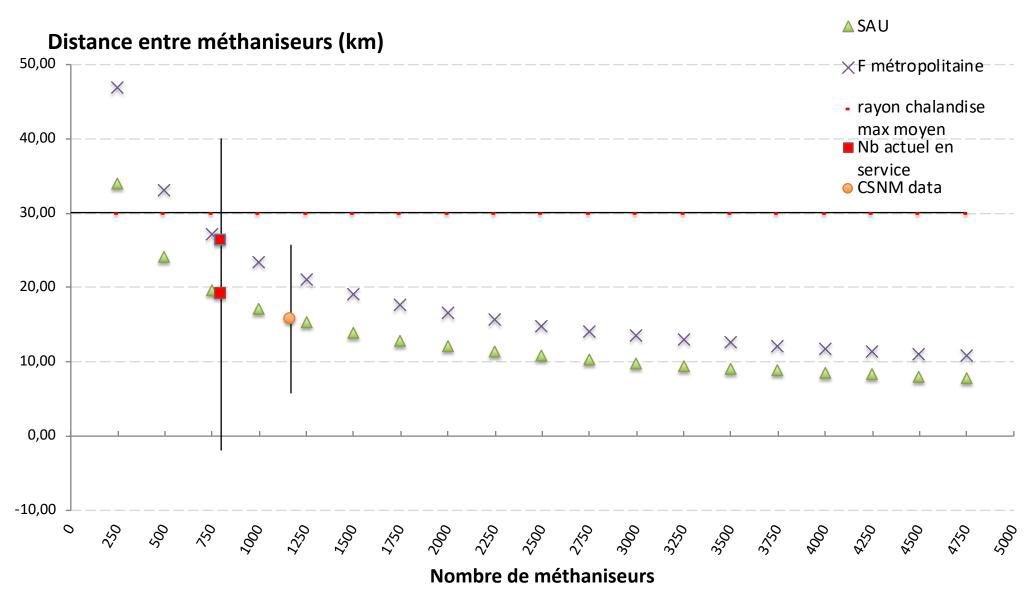
1450 Millions de tonnes de COS dans la SAU métropolitaine

Bilan COS-CO₂ avec méthanisation

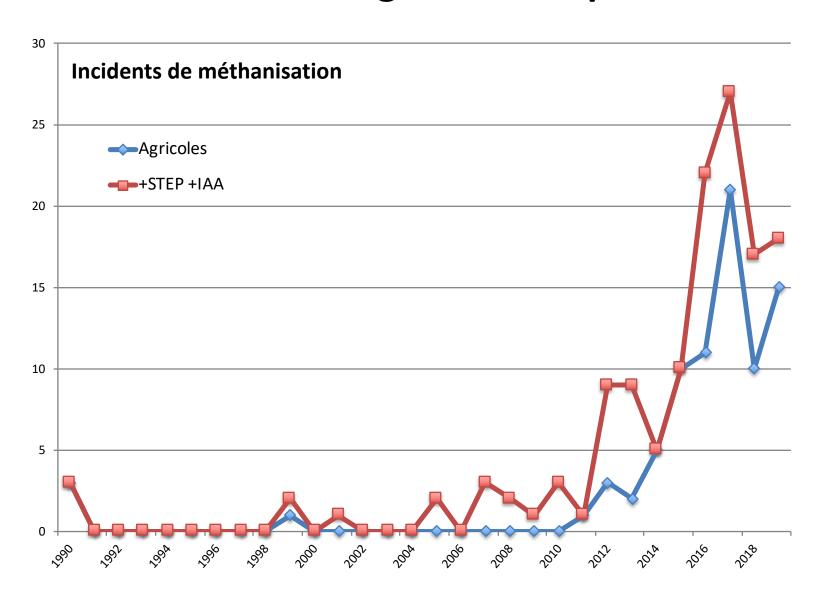


Les bactéries ont faim dans le sol!

C/N < 7
Faim en carbone (C)


C/N > 7 Faim en azote (N)

SOL



Et trouvent donc ce qu'elles peuvent Du COS! - 0,8% de COS

Nombre de méthaniseurs et SAU métropolitaine

Accidentologie - historique

Accidentologie – Causes - Chiffres

794	méthaniseurs en service
137	Incidents depuis 1990
96	Incidents depuis 2015
0,006	Incidents par méthaniseur par an depuis 1990
0,03	Incidents par méthaniseur par an depuis 2015

I: Incendie
E: Explosion
F: Fuite
D: mise en Dépression
EB: Epandage de Boues
DT: Défaut de Torchère
CV: Cuve abimée par Vent
Ir: Irritation Population
Deb: Débordement de Cuve
O: Obturation
NO: Nuisances Olfactives
CI: Couvercle Cuve Intempéries
A: Accident de Personnel
MT: Montée Température
EM: Emanations Gazeuses
AP: Accident Pompier
PE: Pollution Eau
An: Animaux contaminés
AC: Accident Route (Camion, Tracteur)
RC: Rupture Canalisation
Debt: Débordement
DP: Décès Personnel
DB: Déchirement Bâche
IB: Incident Biologique
PO: Pollution Olfactive

Méthanisation oui! Mais pour des déchets-vrais uniquement! Deutsche Akademie der Naturforscher Leopoldina (2012):

Germany should not focus on Bioenergy to reduce the consumption of fossil fuels and GHG emissions. This is the conclusion by the authors of this report after balancing all the arguments for and against the use of biomass as an energy source. Particularly, it should insist that the EU 2020 target of 10 per cent renewable content in road fuel energy is revisited. Rather, Germany should concentrate on other renewable energy sources such as solar heat, photovoltaics, and wind energy, whose area demand, GHG emissions, or other environmental impacts are lower than those of bioenergy. Energy conservation and energy efficiency improvements should have priority.

Promotion of bioenergy should be limited to those forms of bioenergy that: (a) do not reduce food availability or spur food-price increases due to competition for limited resources such as land or water; (b) do not have large adverse impacts on ecosystems and biodiversity; and (c) have a substantially (>60-70 per cent) better GHG balance than the energy carriers they replace. The valuable range of services that ecosystems provide to the public also needs to be respected. All these items have to be considered when biomass or biomass products are imported for bioenergy purposes.

Merci de votre attention!

Les Fiches Pédagogiques du CSNM

https://twitter.com/CSNM9

www.linkedin.com/groups/8732104/

https://www.facebook.com/groups/445158802683181/

https://www.viadeo.com/fr/groups/?containerId=00213evz5a26v9lk